
Distributed Calculations on Fixed-Income Securities ∗

[Extended Abstract]

Timothy J. Williams
Argonne National Laboratory

9700 South Cass Avenue
Building 240

Argonne, IL 60439
zippy@anl.gov

ABSTRACT
This paper reviews real-world examples of distributed com-
puting in the finance industry, specifically in institutional
trading of fixed-income securities. Three examples illus-
trate small to large-scale distributed calculations: valua-
tion of fixed-income derivatives, loading and producing time
sequences of prices in statistical arbitrage on fixed-income
instruments, and valuation of large portfolios of mortgage-
backed securities. Two of these also serve to illustrate a
recurring pattern in distributed access of financial data—
distributed caching.

Categories and Subject Descriptors
J.1 [Administrative Data Processing]: Financial; D.1.3
[Programming Techniques]: Concurrent Programming—
Distributed Programming ; C.1.4 [Processor Architectures]:
Parallel Architectures—Distributed architectures

Keywords
Fixed-income securities, pricing, valuation, mortgage-backed
securities, distributed calculation, database, data cache

1. INTRODUCTION
These examples are taken from nine years’ experience in
technology in the finance industry—six years at Morgan
Stanley in New York, and three years at Citadel Investment
Group in Chicago. Prior to joining Morgan Stanley in 2000,
I had spent eleven years in research as a computational sci-
entist at the Department Energy’s Lawrence Livermore and

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. WHPCF’09,
November 15, 2009 Portland, Oregon, USA Copyright l’ 2009
ACM 978-1-60558-716-5/09/11... $10.00

Los Alamos National Laboratories, specializing in massively
parallel simulation of plasmas and fluids. That kind of fine-
grained parallel computation was absent in all the work I
had exposure to in finance, but there were numerous exam-
ples of coarser-grained distributed computation to be found.
All of the work in this paper was the product of software
development teams at the two financial institutions, whose
members are to numerous to list (see acknowledgements in
§4).

2. EXAMPLES
2.1 Fixed-Income Derivatives
In 2000, the fixed-income derivatives group at Morgan Stan-
ley included both interest-rate and credit derivatives (pri-
marily single-name Credit Default Swaps (CDS) in New
York). Unix workstations were still pervasive on the trad-
ing desk, and Unix servers handled the heavy calculations.
The trading system was designed as a monolithic, single-
threaded server which maintained a large amount of state—
all the state necessary for valuing interest-rate swaps and
other derivatives. Trader screens ran a specialized client
that communicated with the central server. While this was
”distributed,” the desk recognized that the monolithic server
would not hold up indefinitely under increased trading. See
Figure 1.

A development effort was already under way to augment this
environment with multiple, concurrent calculation servers
when I joined in April 2000. The clients would put XML
messages bearing calculation requests and input parameters
to a central message queuing system. A lightweight server
would pick these up and distribute the calculations among a
set of independent calculation servers. Results would be put
back on a message queue, where they would be picked up by
either the lightweight server (if they needed aggregation) or
directly by the client. See Figures 2 and 3. All of these pro-

cesses ran on Solaris
TM

servers, displaying to Solaris desk-
tops, though the change to displaying on X Windows run-

ning on Windows
R©

desktop PCs was already underway.

Starting in late 2000, our group actively pursued porting
the software to Linux, and by late 2001 our distributed cal-
culation server system was one of the first two production
applications running on Linux at Morgan Stanley. From
that point on, the trend was strongly toward Linux for all
servers.

Price IR Swap

Monolithic Server

Trading

Screen

Trading

Screen Trading

Screen

Trading

Screen

Trading

Screen

Price Portfolio

Figure 1: Schematic of original swaps trading com-
ponents.

Trading

Screen

Price IR Swap

Calc server Calc server Calc server Calc server

Lightweight Server

Message Queue

Figure 2: Distributed calculation of a single interest-
rate swap price.

Trading

Screen

Price Portfolio

Lightweight Server

Message Queue

Calc server Calc server Calc server Calc server

Figure 3: Distributed pricing of a whole portfolio of
instruments. The server distributes the instruments
among the available calculation servers.

For a year or so, we also had access to SGI R© symmetric mul-
tiprocessor systems. There was some interest in ”big iron”
at the time, but our software mainly treated these machines
as clusters of individual processors with no memory sharing.
After that time, I wasn’t aware of any subsequent interest
in that architecture, or related tightly-coupled concurrent
software development.

By 2005, Windows R© desktops and clusters/racks of com-
modity Intel R©-based Linux servers were the norm at Morgan
Stanley. The interest-rate desk continued to use the same
distributed calculation system. There were nightly risk cal-
culations, as well as ad hoc security and portfolio valuations
throughout the day. For intraday use, there were O(10) cal-
culation server nodes. One example of a the various batch
calculations: Each afternoon the desk would mark all the
static yield curves (one or more per currency traded), and
would switch on a cluster of O(40) Linux blades to calibrate
those curves.

During the years 2000 to 2005, microprocessor and compiler
technologies had continued advance. By late 2005, a single
processor running a rewritten curve calibration library was
able to match the total wallclock compute time of the rack
process described above. Basically, Moore’s Law had shrunk
the calculation time so that the overhead of processing XML
messages in the distributed system became dominant. The
messaging system, while based on industry practices when
developed, was no longer appropriate for less heavyweight
calculations like static yield curve calibration. Valuation of
exotics and other compute-intensive stochastic calculations
still benefited from the distributed system.

2.2 Statistical Arbitrage on Fixed-Income In-
struments

In early 2006, I joined a team at Citadel Investment Group
investigating strategies in statistical arbitrage on fixed-income
instruments. Instruments traded included interest-rate fu-
tures contracts, bond futures, commodities futures, foreign-
exchange futures, and others. Our models involved analysis
of time series of prices. The quantitative research team ran
various regressions on historical price sequences (daily and
intraday). Models for trading acted on incoming time se-
quences of price quotes, and generated their own sequences
of derived quantities which were persisted and used in future
calculations. We used a small number of compute servers
to handle incoming prices and compute derived quantities.
These communicated via stripped-down hypertext transfer
protocol (HTTP), and stayed synchronized via shared access
to persisted data in databases.

The distributed calculation system was not complex or large-
scale. More interesting was the maintaining of the time-

sequence databases. We used the Sybase IQ
R©

database for
most storage, which is well suited to very ”tall” tables like
long time series. To keep up with incoming market data
and our own ever-increasing derived quantities, we wound
up using a file-based caching system that sat between the
real database and some of the server processes. Appending
to these binary files was fast, as was reading time sequences
from them to bootstrap moving averages and other com-
puted quantities. See Figure 4.

Sybase IQ

Price Histories

Binary

Files
Cache Server

Price Fixing Server

Figure 4: Managing time-series data. The price fix-
ing server computed our own derived quantities and
persisted their time series. The EURUSD graph
represents various market price feeds. The cache
server mediated between the file cache and the ac-
tual database.

2.3 Mortgage-Backed Securities
2.3.1 Calculations

In early 2007, I moved to the securitized products group
at Citadel. There, we built and managed a large-scale dis-
tributed calculation system for valuing mortgage-backed se-
curities (MBS), with emphasis on non-Agency MBS (includ-
ing subprime and Alt-A). Refer to any of the standard lit-
erature for a discussion of the structure of an MBS and its
valuation, for example Fabozzi[2, 3, 1].

Pricing these securities involves modeling the various market
quantities that contribute to prepayment of the mortgages
in the underlying pool. Various phenomena cause prepay-
ment: relocation (selling the house prepays the whole mort-
gage and thus removes its future cashflows from the pool),
delinquency (failing to make payments), and foreclosure, for
example. One key factor is interest rates. If interest rates go
down, there’s an incentive for homeowners to refinance at a
lower rate, which means their original mortgages are payed
down and contribute no further cashflows to the MBS. If
interest rates go up, owners of floating-rate mortgages may
find their monthly payments too high to manage, leading
to delinquencies and foreclosures. This was an especially
strong factor in subprime mortgages at this time, because
of the fixed/adjustable mortgages that reset to a very high
spread over benchmark rates after some initial low fixed-
interest rate for a few years.

Note that in these calculations we modeled the forward cash-
flow behavior loanwise. That is, prepayment modeling was
done at the loan level, based in part on some loan-specific
factors. A typical deal has several thousand loans. Also
note that all pricing was done via simulation, starting with
an ensemble of O(100) realizations of forward interest rates
generated by a stochastic interest-rate model.

From a purely computational viewpoint, pricing a single
MBS went as follows: For an ensemble of stochastic interest-
rate paths, compute the forward cashflows of all the loans in
the pool, using models to determine delinquencies and other
prepayments that (in some paths) lead to payouts/losses
from some mortgages. Feed these into the cashflow water-
fall for the MBS to determine cashflows for the tranches.

Discount these cashflows to get their present value (PV).
Average over all paths to get the overall PV for each tranche
and, optionally, PV for all the loans. Compute interest-rate
sensitivities (PV01) and other risk metrics based on these.
Compute each deal (MBS) independently, which immedi-
ately produced significant embarrassing parallelism because
the number of deals of interest was O(1000). That paral-
lelism formed the first basis for distributing the calculations.

Distribution was simple: For each deal, dynamically instan-
tiate a pricer program on one processor, which loads all the
data it needs, computes all the prices and risk metrics re-
quested, and stages the results to files for uploading to a
database. During the trading day, the desk would use a web
interface to request ad hoc pricing of individual deals and
specific portfolios.

The platform for distribution was commodity racks of com-
modity processors running Linux. The blades in these racks
generally were connected with gigabit ethernet, but the con-
nection fabric was not of much interest to us because of the
embarrassingly parallel nature of the calculations. We had
access to a farm of between 120 and 240 quad-core CPUs.
In-house scheduling software dispatched calculation requests
to physical processors. Web-based process monitors comple-
mented the price-request interfaces. The trading desk used
a desktop-based GUI for viewing the results.

Nightly risk calculations across all deals had even more in-
herent parallelism. Each deal would be priced for a set of
O(10) home price appreciation (HPA) scenarios, which could
all be computed independently. Running on O(700) cores,
all the calculations for the O(1000) deals of interest took
about 4 hours of wallclock time.

Weekend runs added another factor of more then 10 in paral-
lelism: running all the nightly calculations on O(10) interest-
rate-shift scenarios, and running some calculations on a larger
universe of deals. Each weekend, running this batch of cal-
culations on a farm of O(700) cores took about 48 hours of
wallclock time. Using a larger compute farm could clearly
have sped this up if desired (but was not done, based on
cost/benefit analysis).

We did not take advantage of two significant additional di-
mensions of parallelism in the problem: O(100) independent
simulation paths, and O(1000) loans in each deal. Both
of these are better suited for fine-grained parallelism using
threading or multiprocessing with explicit control of inter-
process communication and efficient communication volleys
for aggregation over paths and loans.

2.3.2 Data
Pricing MBS is highly data-intensive, partly because of load-
ing data and model parameters for each and every loan. The
total number of data values for each loan is O(100). This in-
cludes basic dates, characteristics, and balances for the loan,
such as

• identifiers

• payment frequency

• origination date

• original amount

• maturity date

• initial rate

• loan-to-value ratio

• current rate

• index for floating rate

• . . .

Also relevant for modeling prepayments is current loan sta-
tus information such as

• delinquency status (30 days, 60 days, 90 days)

• loss amount

More refined models take into account qualitative informa-
tion such as

• documentation on mortgage application

• property type

One of the most widely-used sources of loan-level data is
the Loan Performance (LP) company. Our pricing used this
data when available. In other cases, data generally takes the
form of mortgage-originator-specific ”tape” data. ”Cracking
tapes” to extract data from proprietary formats is common
practice in the MBS industry. Our distributed calculation
system, in order to take advantage of repeated requests for
the same data, used a multi-level cache for loan data

The primary source was a central database into which LP
and tape data were unified in our own schema. To aug-
ment this in the distributed environment, we deployed a
small number of independent databases holding copies of
loan data of current interest. We used MySQL for these, for
convenience, and deployed them on some segregated Linux
farm nodes. This layer addressed the problem of a flood of
queries overwhelming the central database when performing
large batch calculations.

To further speed up repeated access to the same data (as in
repeated portfolio repricings during the day, or risk runs at
night), we added in-memory cache processes. The schedul-
ing server assigned deals round-robin style to these in-memory
data caches. The cache process did the usual thing: if re-
quested data was not in the memory cache, it fetched it from
one of the distributed databases, then cached it for future
reference. See Figure 5.

MySQL

Cache
MySQL

Cache
MySQL

Cache Pricer

Loan Database

In-Memory

Cache

In-Memory

Cache

In-Memory

Cache

Figure 5: Loan data caching system.

3. OBSERVATIONS
Handling fast concurrent access to centralized loan data in
§2.3.2 was very much like the problem addressed in §2.2. I
know of similar homegrown solutions from a couple of other
areas I had experience with: viewing pricing and risk re-
sults in CDS trading, and analyzing data from tracking, or
historical-verification runs of prepayment models in MBS.
Software offering some an appropriate general solution to
this problem could have been put to good use in these cases,
and probably elsewhere in this industry.

In MBS valuation, when the market comes back to life again,
there may be a need to go beyond coarse-grained distributed
calculations. Parallelizing across interest-rate paths, and
across loans in a deal are the next logical steps. These would
map well onto established techniques for fine-grained paral-
lelism from the high-performance computing field.

4. ACKNOWLEGEMENTS
The systems described in this paper are the fruit of the
collective work of many people from Morgan Stanley and
Citadel Investment Group. Where the paper alludes with
general language to what are obviously specialized and sig-
nificant software systems, it most likely alludes to the work
of others who would be the appropriate people to publish
specifics (in other cases, it indicates proprietary information
not to be published). I would like to particularly acknowl-
edge the interest-rate derivatives, credit derivatives, and
FidMath teams at Morgan Stanley; the Mortgages group at
Citadel; and also Richard Brooks and Slawomir Lisznianski,
key architects of some of the software.

Windows is a registered trademark of Microsoft Corporation in

the United States and other countries. SGI is a trademark [or

service mark or registered trademark, as indicated] of Silicon

Graphics International Corp. or its subsidiaries in the United

States and/or other countries. Solaris is a trademark or regis-

tered trademark of Sun Microsystems, Inc. in the United States

and other countries.

5. REFERENCES
[1] F. J. Fabozzi. The Handbook of Mortgage Backed

Securities. Wiley, New York, New York, 2001.

[2] F. J. Fabozzi. Fixed Income Analysis, 2nd Edition.
Wiley, New York, New York, 2007.

[3] F. J. Fabozzi. Mortgage-Backed Securities: Products,
Structuring, and Analytical Techniques. Wiley, New
York, New York, 2007.

